Self-monitoring of blood glucose did not improve glycemic control in patients with type 2 diabetes not treated with insulin

Clinical impact ratings: GIM/FP/CP ★★★★★☆☆ Endocrinology ★★★★★☆☆

Question
In patients with type 2 diabetes not treated with insulin, does self-testing or self-monitoring of blood glucose (SMBG) levels improve glycemic control?

Methods
Design: Randomized controlled trial (Diabetes Glycemic Education and Monitoring [DiGEM] study).
Allocation: Concealed.*
Blinding: Blinded (laboratory staff).*
Follow-up period: 12 months.
Setting: 48 general practices in Oxfordshire and South Yorkshire, England, United Kingdom.
Patients: 453 patients ≥ 25 years of age at diagnosis of type 2 diabetes (mean age 66 y at study entry, 57% men, median duration of diabetes 3 y) who were managed with diet or oral hypoglycemic agents alone, had hemoglobin A1c (HbA1c) ≥ 7.5%, and were independent in activities of daily living. Exclusion criteria included serious disease and use of a blood glucose meter ≥ 2 times/wk in the previous 3 months.
Intervention: Self-testing by use of a blood glucose meter 3 times daily 2 d/wk, with instructions to contact their physician if readings were consistently high or low (self-testing group, n = 150); self-testing (as above) plus training in timing, interpreting, and using the test results (self-monitoring group, n = 151); or quarterly blood glucose tests but no use of a blood glucose meter (control group, n = 152). All patients received usual care, including training in behavior-changing techniques and feedback on glycemic control.

Outcomes:
- Change in HbA1c level, blood pressure, cholesterol, weight, and body mass index; and hypoglycemic episodes.
- Hemoglobin A1c‡ (Table).

Main results
At 12 months, groups did not differ for change in HbA1c level (Table), blood pressure, weight, body mass index, or ratio of total cholesterol to high-density lipoprotein cholesterol. Decrease in total cholesterol level was greater in the self-monitoring group than in the control group. Risk for hypoglycemia was highest in the self-monitoring group (Table).

Conclusion
Blood glucose self-testing or self-monitoring did not improve glycemic control in patients with type 2 diabetes not treated with insulin.

References

Commentary
Some experts consider SMBG to be an essential part of managing all patients with diabetes, especially those using insulin. Among patients who use tablets or diet to treat their diabetes, the benefit of SMBG has remained uncertain. Universal use of SMBG in this group has important cost- and treatment-burden implications. A meta-analysis supported by industry suggested benefit (1), although a Cochrane review concluded that more evidence was needed (2). The U.K. National Health Service funded the DiGEM trial to answer this question definitively.

The trial was designed to detect a potential dose–response relation across 3 groups: no SMBG, less-intensive SMBG, and more-intensive SMBG (with accompanying education). Participants had reasonably well-controlled diabetes at baseline. Somewhat surprisingly, more participants in the more-intensive self-monitoring group stopped SMBG than in the less-intensive group. This finding may reflect lack of interest in SMBG among study participants: Patients already monitoring were excluded from participation, and they may have derived greater benefit from intensive SMBG. Furthermore, patients in the more-intensive group who persisted with SMBG did monitor more often, but whether they accrued important benefits from SMBG remains unclear. Overall, the results suggest that the benefits of SMBG in patients treated with tablets are minimal at best.

In addition to considering the findings of this trial, clinicians should listen to what their patients have to say about SMBG. A recently published qualitative study of SMBG highlights, among other insights, that clinicians’ focus on HbA1c levels when assessing diabetes control may be interpreted by patients as indicating that SMBG is not important (3).

Frank Waldron-Lynch, MD
Galway University Hospitals
Galway, Ireland
Sean Dinneen, MD
National University of Ireland
Galway, Ireland

Table

<table>
<thead>
<tr>
<th>Outcomes at 12 mo</th>
<th>Self-testing</th>
<th>Self-monitoring</th>
<th>Control</th>
<th>Difference in mean change (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin A1c‡</td>
<td>−0.14%</td>
<td>−</td>
<td>0.00%</td>
<td>−0.14% (-0.35 to 0.07)</td>
</tr>
<tr>
<td></td>
<td>−0.17%</td>
<td>−</td>
<td>0.00%</td>
<td>−0.17% (-0.37 to 0.03)</td>
</tr>
<tr>
<td>Hypoglycemic episodes</td>
<td>22%</td>
<td>−</td>
<td>10%</td>
<td>123% (28 to 292) 9 (5 to 26)</td>
</tr>
<tr>
<td></td>
<td>28%</td>
<td>−</td>
<td>10%</td>
<td>189% (70 to 396) 6 (4 to 10)</td>
</tr>
</tbody>
</table>

*See Glossary.
†Abbreviations defined in Glossary. RRI, NNH, and CI calculated from data in article.
‡Values are mean change from baseline.