Acarbose reduced the risk for cardiovascular disease and hypertension in impaired glucose tolerance


**Question**
In patients with impaired glucose tolerance (IGT), does acarbose reduce the risk for cardiovascular disease and hypertension?

**Design**
Randomized (allocation concealed*), blinded [clinicians, patients, data collectors, and outcome assessors]†, placebo-controlled trial with mean 3.3-year follow-up (STOP-Noninsulin-Dependent Diabetes Mellitus [STOP-NIDDM]).

**Setting**
Hospitals in Canada, Germany, Austria, Norway, Denmark, Sweden, Finland, Israel, and Spain.

**Patients**
1,429 patients who were 40 to 70 years of age (mean age 55 y, 51% women), had a body mass index of 25 to 40 kg/m² (mean 30.9 kg/m²), had IGT according to World Health Organization criteria plus a fasting glucose level of 5.5 to 7.8 mmol/L (mean 6.2 mmol/L), and did not have a cardiovascular event in the previous 6 months. Follow-up was 96%.

**Intervention**
Patients were allocated to acarbose, 100 mg 3 times daily with meals (n = 714), or placebo (n = 715).

**Main Outcome Measures**
Composite endpoint for major cardiovascular event (coronary heart disease [myocardial infarction, new angina, or revascularization procedures], cardiovascular death, congestive heart failure, cerebrovascular events, and peripheral vascular disease). Secondary outcomes were incident hypertension and rates of each type of cardiovascular event.

**Main Results**
Analysis was by intention to treat. Acarbose reduced the risk for a major cardiovascular event and hypertension (Table).

### Acarbose vs placebo in impaired glucose tolerance at mean 3.3-year follow-up‡

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Acarbose</th>
<th>Placebo</th>
<th>Adjusted RRR (95% CI)</th>
<th>NNT (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any major cardiovascular event§</td>
<td>2.2%</td>
<td>4.7%</td>
<td>48% (4.9 to 72)</td>
<td>44 (30 to 436)</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>0.15%</td>
<td>1.7%</td>
<td>91% (28 to 99)</td>
<td>65 (60 to 212)</td>
</tr>
<tr>
<td>Angina</td>
<td>0.73%</td>
<td>1.7%</td>
<td>55% (−28 to 84)</td>
<td>Not significant</td>
</tr>
<tr>
<td>Revascularization procedures</td>
<td>1.6%</td>
<td>2.9%</td>
<td>39% (−26 to 71)</td>
<td>Not significant</td>
</tr>
<tr>
<td>Cardiovascular death</td>
<td>0.15%</td>
<td>0.29%</td>
<td>45% (−506 to 95)</td>
<td>Not significant</td>
</tr>
<tr>
<td>Cerebrovascular event or stroke</td>
<td>0.29%</td>
<td>0.58%</td>
<td>44% (−205 to 90)</td>
<td>Not significant</td>
</tr>
<tr>
<td>Hypertension</td>
<td>11%</td>
<td>17%</td>
<td>32% (10 to 49)</td>
<td>19 (13 to 59)</td>
</tr>
</tbody>
</table>

**Conclusion**
In patients with impaired glucose tolerance, acarbose reduced the risk for cardiovascular disease and hypertension.

**Source of funding:** Bayer AG.

**For correspondence:** Dr. J.L. Chiasson, Centre Hospitalier de l’Université de Montréal-Hôtel-Dieu, Montreal, Quebec, Canada. E-mail jean.louis.chiasson@umontreal.ca.

*See Glossary.
†Information provided by author.

---

**Commentary**
IGT is a key phase in the development of type 2 diabetes and is a potent risk factor for atherosclerotic cardiovascular disease (1). Randomized trials have shown that diet, exercise, and pharmacologic strategies can prevent diabetes in persons with IGT (2, 3). However, the study by Chiasson and colleagues is the first to show that a therapy that prevents diabetes can also reduce the risk for cardiovascular disease and hypertension. Impressively, the prevention of cardiovascular events occurred despite 30% of the participants stopping acarbose during the trial.

The mechanism by which acarbose prevented cardiovascular events in STOP-NIDDM is unclear. Acarbose inhibits the enzymatic cleavage of dietary carbohydrate into simple sugar and is therefore fundamentally akin to dietary modification (raising the glycemic index of food). The improvements in metabolic measures in participants receiving acarbose (with substantial reductions in blood pressure, weight, waist circumference, triglycerides, and plasma glucose) suggest improvements in carbohydrate metabolism and insulin action. Perhaps through these effects (i.e., by improving insulin resistance and the so-called metabolic syndrome), acarbose prevents both diabetes and cardiovascular events.

While trials that will shed light on this issue are ongoing, clinicians should continue to offer effective interventions that prevent diabetes in patients at risk. Such strategies may reduce the risk for cardiovascular events at the same time.

Daniel G. Hackam, MD
University of Toronto
Toronto, Ontario, Canada

**References**